
Large language models:
pre-training, fine-tuning, and trustworthiness

Volkan Cevher
volkan.cevher@epfl.ch

Center for Digital Trust (C4DT) Workshop

Laboratory for Information and Inference Systems (LIONS)
École Polytechnique Fédérale de Lausanne (EPFL)

Switzerland
with Yongtao Wu, Leyla Naz Candogan, Elias Abad Rocamora LIONS

and with Carine Dengler and Linus Gasser C4DT

Acknowledgements
◦ LIONS group members (current & alumni): https://lions.epfl.ch

▶ Quoc Tran Dinh, Fabian Latorre, Ahmet Alacaoglu, Maria Vladarean, Chaehwan Song, Ali Kavis, Mehmet
Fatih Sahin, Thomas Sanchez, Thomas Pethick, Igor Krawczuk, Leello Dadi, Paul Rolland, Junhong Lin,
Marwa El Halabi, Baran Gozcu, Quang Van Nguyen, Yurii Malitskyi, Armin Eftekhari, Ilija Bogunovic,
Yen-Huan Li, Anastasios Kyrillidis, Ya-Ping Hsieh, Bang Cong Vu, Kamal Parameswaran, Jonathan Scarlett,
Luca Baldassarre, Bubacarr Bah, Grigorios Chrysos, Stratis Skoulakis, Fanghui Liu, Kimon Antonakopoulos,
Andrej Janchevski, Pedro Abranches, Luca Viano, Zhenyu Zhu, Yongtao Wu, Wanyun Xie, Elias Abad, Alp
Yurtsever, Leyla Naz Candogan, Francesco Tonin, Arshia Afzal, Ioannis Mavrothalassitis.

▶ EE-556 (Mathematics of Data): Course material

◦ Many talented faculty collaborators

▶ Panayotis Mertikopoulos, Georgios Piliouras, Kfir Levy, Francis Bach, Joel Tropp, Madeleine Udell, Stephen
Becker, Suvrit Sra, Mark Schmidt, Larry Carin, Michael Kapralov, Martin Jaggi, David Carlson, Adrian
Weller, Adish Singla, Lorenzo Rosasco, Alessandro Rudi, Stefanie Jegelka, Panos Patrinos, Andreas Krause,
Niao He, Bernhard Schölkopf, Olivier Fercoq, George Karypis, Shoham Sabach, Mingyi Hong, Francesco
Locatello, Chris Russell, Hamed Hassani, George J. Pappas...

◦ Many talented collaborators

▶ Matthaeus Kleindessner, Puya Latafat, Andreas Loukas, Yu-Guan Hsieh, Samson Tan, Parameswaran
Raman

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 2/ 78

https://lions.epfl.ch
https://www.epfl.ch/labs/lions/teaching/ee-556-mathematics-of-data-from-theory-to-computation/

The era of ChatGPT

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 3/ 78

Outline

◦ This talk
1. Basics of language models
2. Self-attention and transformer architectures
3. Fundamentals of pre-training & fine-tuning & reinforcement learning with human feedback (RLHF)
4. Generative pre-trained transformer (GPT) family
5. Parameter-Efficient Fine-Tuning (LORA)
6. Trustworthy LLM: robustness, safety, privacy

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 4/ 78

A motivation for language models (LMs)

Example
Predict the next word w given the following source sentence Ssource?
Ssource : “On January 1 people usually say happy new [w].”

Question: ◦ Why is this important?
▶ spelling & grammar correction p(year|Ssource) > p(years|Ssource)
▶ machine translation p(Stranslation 1|Ssource) > p(Stranslation 2|Ssource)
▶ sentence classification p(Sclass 1|Ssource) > p(Sclass 2|Ssource)
▶ speech recognition p(w|Ssource)
▶ chatbot p(w|Ssource)
▶ (more generally) labeling, automated decisions,...

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 5/ 78

A motivation for language models (LMs)

Example
Predict the next word w given the following source sentence Ssource?
Ssource : “On January 1 people usually say happy new [w].”

Question: ◦ Why is this important?
▶ spelling & grammar correction p(year|Ssource) > p(years|Ssource)
▶ machine translation p(Stranslation 1|Ssource) > p(Stranslation 2|Ssource)
▶ sentence classification p(Sclass 1|Ssource) > p(Sclass 2|Ssource)
▶ speech recognition p(w|Ssource)
▶ chatbot p(w|Ssource)
▶ (more generally) labeling, automated decisions,...

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 5/ 78

Basics for language models (LMs) – I

Definition (Language model [17])
Models that assign probabilities to sequences of words are called language models.

Remarks: ◦ Given a sentence with T words: S = w1:T = (w1, . . . , wT), by the chain rule of probability:

p(S) = p(w1:T) = p(w1)p(w2|w1)p(w3|w1:2) · · · p(wT |w1:T −1) =
T∏

t=1

p(wt|w1:t−1)

◦ Implicitly, we are enforcing a graphical model that takes “time” into account.

Example
If S = w1:3 = “happy new year”, then p(S) = p(happy)p(new|happy)p(year|happy new).

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 6/ 78

Basics for language models (LMs) – II

Question: ◦ How can we compute p(wt|w1:t−1)?

Remarks: ◦ A trivial solution: Just count the frequency on a large corpus, e.g.,

p(year|Ssource) =
p(Ssource + year)

p(Ssource)
≈

#(On January 1 people usually say happy new year)
#(On January 1 people usually say happy new)

◦ But the language is creative, there are several ways to express the same meaning.

◦ The sentence above might even not appear on the corpus.

◦ We need better ways to estimate such probabilities!

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 7/ 78

N-gram LMs

Markov assumption [22]
The probability of a word only depends on the last N − 1 words as

p(wt|w1:t−1) = p(wt|wt−N :t−1) ≈
#(wt−N :t)

#(wt−N :t−1)
. Markov in 1913 used “Markov chains” to predict

whether the upcoming letter would be a vowel or a
consonant [22].

Example
In the bigram LM (N = 2), we only need to estimate p(wt|wt−1) ≈ #(wt−1:t)

#(wt−1) to generate text.

Figure: Count (Left) and probability p(wt|w1:t−1) (Right) from the Berkeley Restaurant Project corpus of 9332 sentences [17].

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 8/ 78

Towards pre-training an N-gram LM

◦ In natural language processing (NLP), we use tokens to represent words coming from a vocabulary V.

Terminologies: ◦ A token is the smallest unit that can be assigned a meaning to be processed.
▶ In English, a token often corresponds to a word.
▶ However, a single token can also encode compound words like New York.
▶ In Chinese or Japanese, there is no space between words.
▶ In these languages, sentence segmentation is required before we tokenize.
◦ We indicate the beginning and the end of sentences with tokens ⟨BOS⟩ and ⟨EOS⟩.
▶ Ssource “⟨BOS⟩ Happy new year ⟨EOS⟩” has T = 5 tokens.
◦ The size of our vocabulary is denoted as |V|.

◦ Pre-training: building a LM based on a large corpus in a (often) self-supervised manner.

◦ Inference: Using a trained LM to do next word prediction.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 9/ 78

N-gram LMs: “Pre-training” & Inference

◦ The following simplified examples show the difficulty of pre-training and inference with 2-gram LMs.

“Pre-training”
1. Count #(wt−1) and #(wt−1:t) over the corpus.
2. Obtain probability p(wt|wt−1) over the corpus.

Inference
1. Set w1 as ⟨BOS⟩, t = 1.
2. While True:
▶ wt+1 = arg maxw∈V p(w|wt)
▶ If wt+1 is ⟨EOS⟩: break
▶ t = t + 1

3. Output: [w1, · · · , wt+1].

Remarks: ◦ Need to store the probability for all N -gram pairs.

◦ Language is creative, some new N -gram pairs might not even appear on the corpus.

◦ Cannot incorporate earlier words than N due to the Markov assumption.

p(two | one plus one equals) = p(two | it is wrong that one plus one equals)?

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 10/ 78

Word representations

Question: ◦ How can we numerically represent a word/meaning?

Remarks: ◦ Osgood et al. 1957 [27] uses 3 numbers to represent a word.
▶ valence: the pleasantness of the stimulus
▶ arousal: the intensity of emotion provoked by the stimulus
▶ dominance: the degree of control exerted by the stimulus

Figure: From [16].

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 11/ 78

Word embeddings

Definition (Word embeddings [17])
Vectors for representing words are called word embeddings.

◦ We will briefly introduce two words embeddings:

◦ One-hot representation: sparse and long word embedding in R|V|.
▶ Training is not required—trivial to obtain.
▶ Not a good way to capture the underlying meaning—cannot measure similarity.
◦ Word2vec [23]: a framework to learn dense and concise word embedding.
▶ Training is required.
▶ Better characterization for the meaning of a word, e.g., the similarity can be computed by similarity metrics.
▶ Cosine similarity or inner products work!

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 12/ 78

Word2vec [23]: Setup

◦ An illustration of a target word and context words in a ±2 window size:

... people usually︸ ︷︷ ︸
context words

say︸︷︷︸
target word

happy new︸ ︷︷ ︸
context words

...

◦ Word2vec uses learnable parameters Xc and Xt to present two embeddings for each word,
▶ Xc corresponds to the embedding when it is as a context word.
▶ Xt corresponds to the embedding when it is as a target word
▶ They satisfy the following relationship:

bt
i = Xtei ∈ Rd, bc

i = Xcei ∈ Rd,

where ei ∈ R|V| is the one hot representation for each word, i ∈ 1, . . . |V|.

Remarks: ◦ The window size for the context is a hyperparameter.

◦ The final embedding can be the summation or concatenation of these two embeddings.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 13/ 78

Word2vec [23]: Training

◦ Core idea: Given a pair of words (wi, wj), return the probability that wj is the context word of wi (i.e., true).

A simple approach: p(true|(wt, wc)) = σ(⟨bt
t, bc

c⟩) =
1

1 + exp(−⟨bt
t, bc

c⟩)
, where σ is the sigmoid activation.

◦ Given a tuple (wt, wc, wn), we have the following ingredients
▶ wt is the target word.
▶ wc is one of its context words(positive samples)
▶ wn is not its context word (negative sample)—e.g., chosen via unigram (1-Gram) probability.
▶ A loss function:

L = − log (p(true|(wt, wc))p(false|(wt, wn)))
= − log p(true|(wt, wc))− log p(false|(wt, wn))

= − log σ(⟨bt
t, bc

c⟩)− log(1− σ(⟨bt
t, bc

n⟩))

= − log
1

1 + exp(−⟨Xtet, Xcec⟩)
− log

(
1−

1
1 + exp(−⟨Xtet, Xcen⟩)

)
◦ Crawl the corpus to obtain these tuples, and minimize L (e.g., with stochastic gradient descent).

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 14/ 78

Tokenization methods: Word tokenization https://huggingface.co/spaces/eson/tokenizer-arena

◦ “ A proper tokenizer is crucial for a model with magnificent performance.”

Advantages:
▶ The word level meaning is preserved

Disadvantages:
▶ Very large vocabulary size (around 250000)
▶ Computationally more expensive to train
▶ Misspellings may be assigned as OOV (out of

vocabulary)

Examples: ◦ Transformer XL [8]

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 15/ 78

https://huggingface.co/spaces/eson/tokenizer-arena

Tokenization methods: Character tokenization https://huggingface.co/spaces/eson/tokenizer-arena

◦ “ A proper tokenizer is crucial for a model with magnificent performance.”

Advantages:
▶ Small vocabulary size (around 300)
▶ Very few unknown tokens
▶ Spelling mistakes are not important

Disadvantages:
▶ Large sequence length
▶ For many languages, like English, individual

characters do not carry much information

Examples: ◦ CANINE [6],

◦ ByT5 [49]

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 16/ 78

https://huggingface.co/spaces/eson/tokenizer-arena

Tokenization methods: Subword tokenization https://huggingface.co/spaces/eson/tokenizer-arena

◦ “ A proper tokenizer is crucial for a model with magnificent performance.”

▶ Do not split the frequently used words into smaller subwords.
▶ Split the rare words into smaller meaningful subwords.

Advantages:
▶ Medium sized vocabulary
▶ Word meanings are preserved

Disadvantages:
▶ Spelling mistakes
▶ Abbreviations

Examples: ◦ WordPiece [47] (BERT, DistilBERT...),

◦ BPE (Byte-Pair Encoding) [37] (Llama 2, Llama 3, GPT-3.5, GPT-4...)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 17/ 78

https://huggingface.co/spaces/eson/tokenizer-arena

Designing neural networks for pre-training LM

◦ A two-layer feedforward neural network (FNN):

hx(a) :=

[
XO

] activationy
σ


weight

↓[
XI

] input
↓[
a

]
︸ ︷︷ ︸

hidden layer z = non-linear features

, x := [XI , XO]

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 18/ 78

Short detour: Statistical learning with maximum-likelihood estimators

◦ A visual summary: From parametric models to learning machines

(ai, bi)n
i=1

modeling−−−−−−−→
parameter x

P (bi|ai, x) independency−−−−−−−−→
identical dist.

px(b) :=
n∏

i=1

P (bi|ai, x)

↓ maximizing w.r.t x
a −→Learning Machine←− x⋆

ML
prediction ↓

hx⋆
ML

(a)

Observations: ◦ Recall x⋆
ML ∈ arg minx∈X {L(hx(a), b) := − log px(b) }.

◦ Maximizing px(b) gives the maximum-likelihood (ML) estimator.

◦ Maximizing px(b) and minimizing − log px(b) result in the same solution set.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 19/ 78

Designing neural networks for pre-training LM
◦ A two-layer feedforward neural network (FNN):

hx(a) :=

[
XO

] activationy
σ


weight

↓[
XI

] input
↓[
a

]
︸ ︷︷ ︸

hidden layer z = non-linear features

, x := [XI , XO]

Maximum-likelihood estimator
The maximum-likelihood estimator (supervised learning with data (a, b)) is given by

x⋆ ∈ arg min
x∈X
{L(hx(a), b) := − log px(b) } .

Remark: ◦ NN-based LM can be considered as an unsupervised maximum-likelihood estimator.

x⋆
LM ∈ arg min

x∈X
− log px(S) = − log px(b1:T),

where px(S) is the probability of sentence S with embedding b1:T = (b1, . . . , bT).

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 20/ 78

The optimization objective

◦ A (vector-output) neural network hx ∈ ∆|V|−1 can be used to model such probability.

− log px(b1:T) = − log

(
T∏

t=1

px(bt|b1:t−1)

)
=

T∑
t=1

− log px(bt|b1:t−1)︸ ︷︷ ︸
hx(b1:t−1)[“bt”]


=

T∑
t=1

(
− log hx(b1:t−1)[“bt”]

)
=

T∑
t=1

(
−

|V|∑
i=1

û[i]
t log u[i]

t

)
= cross entropy loss

▶ ut := hx(b1:t−1) ∈ R|V| is the probability distribution of the next word given previous t− 1 words.
▶ ût ∈ R|V| is the correct distribution (one-hot) at t step.

Remarks: ◦ Teacher forcing training: We always give the model the correct history sequence.

◦ Auto-regressive inference: The history sequence comes from its prediction result.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 21/ 78

Basic NN setups for LM: architectures & objective

◦ Below, we present a general idea of deploying neural networks as LMs.
▶ Feed-forward neural network (FNN)
▶ Recurrent Neural Networks (RNN)
▶ Self-attention
◦ At each step t, we use NN to model the probability distribution of the current word given previous t− 1 words.

probability distribution of next wordy
ut := hx(b1:t−1) := Softmax


[

XO

] some architecturesy
FNN/RNN/Self-attention


some weight

↓

X ,

previous words
↓

b1:t−1


︸ ︷︷ ︸

hidden layer z = non-linear features


◦ Then, we can minimize the cross-entropy loss (i.e., −

∑|V|
i=1 û[i]

t log u[i]
t) via (stochastic) gradient descent.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 22/ 78

Basic NN setups for LM: data preparation

Figure: Demo of data preparation. To parallelize the training, a batch (batch size = 3) is fed into the model in each iteration. If
sequence length is larger (smaller) than context length 15, we cut the exceeded part (pad with special token).

Remarks: ◦ A batch is a collection of sequences of fixed length.

◦ Sequence length: the number of tokens in an input sequence used in training.

◦ Context length: the maximum allowable tokens that can be used in predicting the next token.

◦ Modern LM uses a learnable embedding layer instead of pre-trained word embedding.
LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 23/ 78

Basic NN setups for LM: data preparation

Figure: Demo of data preparation. If sequence length is larger (smaller) than context length 15, we move the exceeded tokens
to (append the tokens from) the next sentence. This can improve the training efficiency.

Remarks: ◦ A batch is a collection of sequences of fixed length.

◦ Sequence length: the number of tokens in an input sequence used in training.

◦ Context length: the maximum allowable tokens that can be used in predicting the next token.

◦ Modern LM uses a learnable embedding layer instead of pre-trained word embedding.
LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 23/ 78

Basic NN setups for LM: data preparation

◦ Context length in different LMs:
▶ BERT: 512 tokens
▶ GPT-2: 1024 tokens
▶ Llama 2: 4096 tokens
▶ Llama 3: 8192 tokens
▶ GPT-4: 32K tokens ∼ 160 pages of a novel
▶ Claude 2: 100K tokens ∼ 500 pages of a novel

◦ Batch size in different LMs:
▶ GPT-2: 512
▶ Llama: 4M
▶ Llama 2: 4M

◦ Packing is used in GPT-3 (and probably in others)

Figure: Context lengths of various models, from https://cobusgreyling.medium.com

Figure: Pre-training data used in LLaMA.
LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 24/ 78

https://cobusgreyling.medium.com

FNN as LM [1]: pre-training

◦ Core idea: use most recent N tokens to predict next token (similar to N -gram)
◦: XI ∈ Rm×Nd, XO ∈ R|V|×m are learnable parameters, where d is the dimension of the embedding.

Forward pass in pre-training on single sentence
(only use two recent tokens, i.e., N = 2)

1. Set b0 = 0, initial loss L = 0
2. For t = 1, . . . , T

▶ zt = σ

(
XI

[
bt−1

bt

])
, FNN

▶ ut = Softmax(XOzt), probability

▶ L+ =
(∑|V|

i=1−û[i]
t log u[i]

t

)
. loss

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 25/ 78

RNN as LM [24]: pre-training

◦ A weakness of FNN LM is the Markov assumption: It cannot capture long-term dependencies.

◦ RNN architectures only partially address this issue.

◦: X1 ∈ Rm×m, X2 ∈ Rm×d, XO ∈ R|V|×m are learnable parameters.

Forward pass in pre-training on single sentence
1. Set initial state z0 = 0, initial loss L = 0
2. For t = 1, . . . , T

▶ zt = σ(X1zt−1 + X2bt), RNN
▶ ut = Softmax(XOzt), probability

▶ L+ =
(∑|V|

i=1−û[i]
t log u[i]

t

)
. loss

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 26/ 78

RNN as LM: inference
◦ RNN architectures perform auto-regressive inference.

Forward pass in inference
1. Set b1 as the embedding of ⟨BOS⟩, t = 1, initial
state z0 = 0.
2. While True:
▶ zt = σ(X1zt−1 + X2bt)
▶ ut = Softmax(XOzt)
▶ Set bt+1 as the embedding of the token

corresponding to arg max ut.
▶ If bt+1 is the embedding of ⟨EOS⟩: break
▶ t+ = 1

3. Output: [b1, · · · , bt+1].

Figure: Auto-regressive inference

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 27/ 78

Self-attention layer as LM
◦ A weakness of the RNN LMs is its recursive non-parallelizable computation.

◦ Self-attention can address these issues.

Figure: (Left panel) FNN in LM. (Middle panel) RNN in LM. (Right panel) Self-attention in LM.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 28/ 78

Self-attention layer for LM

◦ Core idea: compare a word of interest to other words based on their relevance.

◦ How do we measure the relevance of two words?
▶ inner products (recall word embeddings)
▶ e.g., for the word with embedding b3, we can compute three scores:

Score(3, 1) = ⟨b3, b1⟩; Score(3, 2) = ⟨b3, b2⟩; Score(3, 3) = ⟨b3, b3⟩.

◦ Next, we normalize them with a softmax to create a vector of weights, and obtain the output:

z3 =
3∑

j=1

Softmax([Score(3, 1), Score(3, 2), Score(3, 3)])jbj

=
3∑

j=1

exp(Score(3, j))∑3
i=1 exp(Score(3, i))

bj

Figure: Self-attention layer.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 29/ 78

Self-attention layer for LM

◦ A more sophisticated way to present how words are contributed to each other:
▶ Query: when the current word goes measure the relevance with other words.
▶ Key: when being measured the relevance by other words.
▶ Value: value used to compute the final output.

◦ For each word, calculate its corresponding query, key, and value using parameters XQ, XK , XV ∈ Rm×d

qi = XQbi, ki = XKbi, vi = XV bi.

◦ Then, for the word with embedding b3, those three scores become:

Score(3, 1) = ⟨q3, k1⟩; Score(3, 2) = ⟨q3, k2⟩; Score(3, 3) = ⟨q3, k3⟩.

z3 =
3∑

j=1

Softmax([Score(3, 1), Score(3, 2), Score(3, 3)])jvj

◦ We need to learn the parameters XQ, XK , XV ∈ Rm×d. Figure: Self-attention layer.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 30/ 78

Positional embeddings in self-attention
Question: ◦ Does self-attention layer consider the relative position of each word in the sequence? No!

Observation: ◦ If we switch the order of b1 and b2, the output z3 remains the same.

Figure: Self-attention layer.

◦ In comparison, RNN encodes the information about the order of the inputs recursively.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 31/ 78

Positional embeddings in self-attention
Question: ◦ Does self-attention layer consider the relative position of each word in the sequence? No!

Solution 1? ◦ Absolute position via trivial concatenation.

Pos(bt) = Concatenate[bt, t] .

◦ Unbounded value.

◦ Hard to extrapolate on sequence with unseen length.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 31/ 78

Positional embeddings in self-attention
Question: ◦ Does self-attention layer consider the relative position of each word in the sequence? No!

Solution 2 [44]: ◦ Absolute position via trigonometric functions of different frequencies. For t = 1, . . . , T :

Pos(bt) = bt +



sin
(

t/100002×1/d
)

cos
(

t/100002×1/d
)

...

sin
(

t/100002× d
2 /d
)

cos
(

t/100002× d
2 /d
)


From [51]

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 31/ 78

Positional embeddings in self-attention
Question: ◦ Does self-attention layer consider the relative position of each word in the sequence? No!

Solution 2 [44]: ◦ Absolute position via trigonometric functions of different frequencies. For t = 1, . . . , T :

Pos(bt) = bt +



sin
(

t/100002×1/d
)

cos
(

t/100002×1/d
)

...

sin
(

t/100002× d
2 /d
)

cos
(

t/100002× d
2 /d
)


From [51]

Solution 3: ◦ ⋆Rotary position embedding [39]: incorporate both absolute position and relative position.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 31/ 78

Extending context length LongRoPE: Extending LLM Context Window Beyond 2 Million Tokens, 2024 [9]

◦ What about even longer texts?
▶ LongRoPE [9]: 2048K tokens
▶ State-space models: S4 [11], Hyena [28], Mamba [10], Samba [33]...

Passkey
retrieval test:

◦ The goal is to retrieve a random passkey (i.e. 5 digit number) hidden in a long document.

Figure: Passkey retrieval accuracy of different models [9]

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 32/ 78

Extending context length LongRoPE: Extending LLM Context Window Beyond 2 Million Tokens, 2024 [9]

◦ RoPE [39] uses sinusoidal functions to assign positional values to the tokens.

LongRoPE:
mθi −→ I(λ̂i, m̂)×mθi

whereI(λ̂i, m̂) =
{

1 m ≤ m̂,
1

λi
m ≥ m̂

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 33/ 78

Self-attention layer for LM

◦ B = [b1,bT]⊤ ∈ RT ×d: collections of embeddings of all tokens.
◦ Learnable parameters: XQ, XK , XV ∈ Rm×d, XO ∈ R|V|×m.

Forward pass in training on a single sentence
1. Set initial loss L = 0.
2. Q = BX⊤

Q, K = BX⊤
K , V = BX⊤

V , query, key, value.
3. S = Mask(QK⊤), calculate score and mask score.
5. Z := [z1, ..., zT]⊤ = Row-wise-Softmax(S)V , self-attention output
6. U := [u1, ..., uT]⊤ = Row-wise-Softmax(ZX⊤

O), probability
7. L = L +

(∑T

t=1

∑|V|
i=1−û[i]

t log u[i]
t

)
, loss Figure: Mask score for S.

Remarks: ◦ In the remaining slide, bt has already been added to position embedding.

◦ Masking score is used to prevent “cheating.”
▶ the current word has only seen previous word.
▶ the subsequent word is unknown.
▶ the element −∞ after softmax becomes 0.
◦ Attention with masking score is usually called “Masked attention.”

◦ This construction enables parallelization whereby improving upon RNNs.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 34/ 78

Self-attention layer as LM: inference

Forward pass in inference
1. Set b1 as the embedding of ⟨BOS⟩, t = 1.
2. While True:
▶ qt = XQbt, kt = XKbt, vt = XV bt, calculate query, key, value
▶ s = [⟨qt, k1⟩, · · · , ⟨qt, kt⟩]⊤, calculate score
▶ zt = [v1, · · · , vt] · Softmax(s)
▶ ut = Softmax(XOzt)
▶ Set bt+1 as the embedding of the token corresponding to arg max ut.
▶ If bt+1 is the embedding of ⟨BOS⟩: break
▶ t+ = 1

3. Output: [b1, · · · , bt+1].

Remark: ◦ Still non-parallelizable, still auto-regression, the same as RNN LM, FNN LM.

◦ At t step, we only calculate the query qt and value vt for bt.

◦ We store previous queries qt−1, . . . , q1 and values vt−1, . . . , v1. This is called “KV-cache.”

◦ KV-cache is the critical bottleneck in LLM inference with transformers.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 35/ 78

Transformer as LM
◦ A Transformer block= [self-attention layer + layer normalization + feedforward layer + layer normalization].
◦ We stack L Transformer blocks to form an LM, e.g., L = 12 in [30].

Forward pass in pre-training on single sentence
1. Set initial loss L = 0, denote by Z0 = B the input to the first block.
2. For l = 1, . . . ,L
▶ Ql = Zl−1X⊤

Q,l, Kl = Zl−1X⊤
K,l, Vl = Zl−1X⊤

V,l, query, key, value.
▶ Sl = Mask(QlK

⊤
l), calculate score and mask score.

▶ Zl = Row-wise-Softmax(Sl)Vl

▶ Zl+ = Zl−1, “add” in the figure, motivated by ResNet [12]
▶ Zl = Layernorm(Zl)
▶ Zshortcut = Zl

▶ Zl = σ(XF,lZl), feedforward
▶ Zl+ = Zshortcut, “add”
▶ Zl = Layernorm(Zl) output of each Transformer block

3. U := [u1, ..., uT]⊤ = Row-wise-Softmax(ZLX⊤
O), probability

4. L+ =
(∑T

t=1

∑|V|
i=1−û[i]

t log u[i]
t

)
, loss

Remarks: ◦ Original Transformer is proposed with encoder and decoder for neural machine translation [44].
◦ The Transformer decoder is sufficient as an LM.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 36/ 78

GPT-1 [30]: (Pre-train + fine-tune paradigm)“Improving Language Understanding by Generative Pre-Training”, 2018

Remarks: ◦ Pre-training enables learning better underlying language patterns on a large corpus.
◦ Pre-training provides a better parameter initialization for fine-tuning, leading to faster convergence.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 37/ 78

GPT-1 [30]: (Pre-train + fine-tune paradigm)“Improving Language Understanding by Generative Pre-Training”, 2018

◦ Step 1: Pre-train a LM on a large unlabeled corpus using Transformer’s decoder.
▶ Recall that Transformer’s decoder is sufficient for LM.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 38/ 78

GPT-1 [30]: (Pre-train + fine-tune paradigm)“Improving Language Understanding by Generative Pre-Training”, 2018

◦ Step 1: Pre-train a LM on a large unlabeled corpus using Transformer’s decoder.
▶ Recall that Transformer’s decoder is sufficient for LM.
◦ Step 2: Fine-tune on specific tasks, e.g., on a sentence classification task.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 38/ 78

GPT-1

Limitation: ◦ Require task-specific datasets and task-specific fine-tuning.

◦ Model is fine-tuned on very narrow task distributions.

◦ Model does not necessarily generalize better out-of-distribution.

Question: ◦ Is it possible to address these limitations?
▶ Humans do not require large supervised datasets to learn most new language tasks.

–“please tell me if this sentence describes something happy or something sad”

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 39/ 78

GPT-2, GPT-3 [31, 2] “Language Models are Unsupervised Multitask Learners”, “Language Models are Few-Shot Learners”

◦ Same as GPT-1: we still pre-train the LM on unlabeled corpus.
◦ New: no need to fine-tune anymore. One pre-trained LM for all tasks, achieve SOTA.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 40/ 78

GPT-2, GPT-3 [31, 2] “Language Models are Unsupervised Multitask Learners”, “Language Models are Few-Shot Learners”

◦ Same as GPT-1: we still pre-train the LM on unlabeled corpus.
◦ New: no need to fine-tune anymore. One pre-trained LM for all tasks, achieve SOTA.

◦ How?

Figure: From https://businessolution.org/gpt-3-statistics/
LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 40/ 78

https://businessolution.org/gpt-3-statistics/

Few-shot prompting (In-context learning) in GPT-3

◦ GPT-1: finetune the model on a specific task.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 41/ 78

Few-shot prompting (In-context learning) in GPT-3

◦ GPT-1: finetune the model on a specific task. ◦ GPT-3: no fine-tuning is fine.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 41/ 78

Few-shot prompting (In-context learning) in GPT-3

◦ GPT-1: finetune the model on a specific task. ◦ GPT-3: no fine-tuning is fine.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 41/ 78

Few-shot prompting (In-context learning) in GPT-3

◦ GPT-1: finetune the model on a specific task. ◦ GPT-3: no fine-tuning is fine.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 41/ 78

Few-shot prompting (In-context learning) → emergent abilities of LLM

“An ability is emergent if it is not present in smaller models but is present in larger models.”[46]

Figure: Emergent abilities of few-shot prompting appear when the model parameters (x-axis) are increased to some extent. [46]

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 42/ 78

Chain-of-thought prompting → emergent abilities of LLM

Figure: Demo of chain-of-thought (CoT) prompting [19].

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 43/ 78

Chain-of-thought prompting → emergent abilities of LLM

Figure: Performance under chain-of-thought prompting is increased until a certain model scale on Math word problems [46], A
LLM called LaMDA is used [41].

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 43/ 78

Why emergent abilities occur? [35]

◦ Understanding this would benefit:
▶ Economy and environment: reduce training cost to obtain desired emergent abilities.
▶ AI-Safety: prevent larger models from acquiring dangerous capabilities without warning.

Figure: In NeurIPS 2023, the paper that explains “emergent abilities” achieved outstanding paper award. As a remark: the
Word2vec paper achieved “Test of time” award.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 44/ 78

Why emergent abilities occur?
◦ Emergent abilities occur due to:
▶ fundamental changes by model scaling.
▶ researcher’s choice of metric.
◦ Nonlinear or discontinuous metrics produce apparent emergent abilities.
◦ Linear or continuous metrics produce smooth, continuous, predictable changes in performance.

109 1010 1011

GPT-3 Model Parameters

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Target Str Len
1
2
3
4
5
Temp
0.0
1.0

109 1010 1011

GPT-3 Model Parameters

6

5

4

3

2

1

0

- T
ok

en
 E

di
t D

ist
an

ce

Target Str Len
1
2
3
4
Temp
0.0
1.0

Figure: 2-Integer 2-Digit Multiplication Task. Left: performance is measured by a nonlinear metric (e.g., Accuracy). Right:
performance is instead measured by a linear metric (e.g., Token Edit Distance).

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 45/ 78

FLAN [45] (Pre-training + Instruction-tuning) “Finetuned language models are zero-shot learners”, 2021

◦ Fine-tuning is useful again, with the instruction format, allowing generalize to unseen tasks.

◦ Better than aforementioned “no fine-tuning” + “few-shot prompting”.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 46/ 78

InstructGPT (Aligned LLM: Pre-training + Instruction-tuning + RLHF)
“Training language models to follow instructions with human feedback”, 2022

◦ Limitation of GPT-3: trained to predict the next token, can not follow user instructions well.
◦ InstructGPT:
▶ Towards following user instructions, more helpful, less toxic.
▶ Align LM with user intent by instruction-tuning and reinforcement learning from feedback (RLHF).

Figure: Demo of aligned LLM for helpfulness, from
https://openai.com/research/instruction-following

Figure: Demo of aligned LLM for safety, from [3]

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 47/ 78

https://openai.com/research/instruction-following

InstructGPT

◦ Step 1: Pre-train a Transformer-based LM based on unlabeled corpus, similar to GPT-1, GPT-2, GPT-3.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 48/ 78

InstructGPT
◦ Step 2: Supervised fine-tune (instruction-tune) via collected demonstration.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 49/ 78

InstructGPT
◦ Step 3 (RLHF): Train a reward model rx(Sprompt, Sresponse) with parameters x.
▶ GPT-3-based architecture.
▶ Input: concatenation of Sprompt and Sresponse. Output: scalar value.
▶ Loss:

Lx = −
1(
K
2

)E(Sprompt,Sresponse1,Sresponse2)∼D [log (σ (rx (Sprompt, Sresponse1)− rx (Sprompt, Sresponse2)))] ,

where Sresponse1 is the preferred response out of the pair of Sresponse1 and Sresponse2, D is the dataset of
human comparisons. For each prompt, labelers need to rank K response, leading to

(
K
2

)
comparison.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 50/ 78

InstructGPT

◦ Step 4 (RLHF): Using this reward model to fine-tune GPT via Proximal Policy Optimization (PPO) [36]
▶ (state, action): (Sprompt,Sresponse).
▶ Initialize a policy to be the fine-tuned GPT in step 2, i.e., πSFT.
▶ Initialize a copy of the above policy with parameters ϕ that we want to optimize, i.e., πRL

ϕ .
▶ Use PPO to optimize ϕ in order to maximize the following objective.

Lϕ(Sprompt, Sresponse) = rx(Sprompt, Sresponse)− β log[πRL
ϕ (Sresponse|Sprompt)/πSFT(Sresponse|Sprompt)]︸ ︷︷ ︸

penalty term

▶ The penalty term ensures the new policy πRL
ϕ doesn’t change a lot from the original policy πSFT.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 51/ 78

LLaMA [42] (Pre-training only) “Llama: Open and efficient foundation language models”, 2023

◦ GPT-3 (175B) model struggles in inference efficiency.

◦ LLaMA-13B can be run on a single A100 GPU.

◦ LLaMA-13B outperforms GPT-3 (175B) on most benchmarks.

◦ How? key reasons: training on more tokens.
▶ GPT-3: 300B tokens.
▶ LLaMA: 1T tokens. Figure: Pre-training data of LLaMA.

◦ This is a concurrent work with InstructGPT.

◦ Other features of LLaMA:
▶ Use pre-normalization in transformer; Use SwiGLU instead of ReLU; Use rotary position embedding.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 52/ 78

LLaMA [42] (Pre-training only) “Llama: Open and efficient foundation language models”, 2023

◦ GPT-3 (175B) model struggles in inference efficiency.

◦ LLaMA-13B can be run on a single A100 GPU.

◦ LLaMA-13B outperforms GPT-3 (175B) on most benchmarks.

◦ How? key reasons: training on more tokens.
▶ GPT-3: 300B tokens.
▶ LLaMA: 1T tokens.

Question
◦ Why do more tokens but fewer parameters achieve better results?

Figure: Pre-training data of LLaMA.

◦ This is a concurrent work with InstructGPT.

◦ Other features of LLaMA:
▶ Use pre-normalization in transformer; Use SwiGLU instead of ReLU; Use rotary position embedding.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 52/ 78

Scaling laws in LLMs [13, 18] “Scaling Laws for Neural Language Models”, 2020, “Training compute-optimal large language models”,2022

Question
◦ Given fixed computing budget Cmin (training FLOPs), what matters most for the final performance?

◦ By large-scale empirical observations (scaling law) [18].
▶ model size N (number of parameters).
▶ dataset size D (number of training tokens).
▶ Architecture design (e.g., layer, depth, number of attention heads).

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 53/ 78

Scaling laws in LLMs [13, 18] “Scaling Laws for Neural Language Models”, 2020, “Training compute-optimal large language models”,2022

Question
◦ Given fixed computing budget Cmin (training FLOPs), what matters most for the final performance?

◦ By large-scale empirical observations (scaling law) [18].
▶ model size N (number of parameters).
▶ dataset size D (number of training tokens).
▶ Architecture design (e.g., layer, depth, number of attention heads).

Figure: The performance is slightly affected by the number of layers nlayer, dimension of the residual stream (dmodel), and
number of attention heads per layer nhead,

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 53/ 78

Scaling laws in LLMs

◦ By large-scale empirical observations [13], the optimal N⋆ and D⋆ satisfies N⋆ ∝ C0.5
min , D⋆ ∝ C0.5

min .

◦ When doubling the model size, the number of training tokens should also be doubled.

Parameters FLOPs Tokens

400 M 1.92e+19 8.0 B
1 B 1.21e+20 20.2 B

10 B 1.23e+22 205.1 B
67 B 5.76e+23 1.5 T

175 B 3.85e+24 3.7 T
280 B 9.90e+24 5.9 T
520 B 3.43e+25 11.0 T

1 T 1.27e+26 21.2 T
10 T 1.30e+28 216.2 T

Table: Estimated optimal training FLOPs and training tokens for various model sizes [13].

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 54/ 78

LLaMA-2 [43] (Aligned LLM: Pre-training + Instruction-tuning + RLHF)
“Llama 2: Open foundation and fine-tuned chat models”, 2023

◦ A family of open-source pre-trained and fine-tuned LLMs.
▶ LLaMA-2: an updated pre-trained version of LLaMA-1.
▶ Llama 2-chat: a fine-tuned version of LLaMA-2, that is optimized for dialogue use cases.
◦ Achieve comparable results against closed-source ChatGPT.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 55/ 78

LLaMA-2
Pre-training Data Params Context

Length
Grouped-query

attention
Tokens

LLaMA-1 See previous slide

7B 2k ✗ 1T
13B 2k ✗ 1T
33B 2k ✗ 1.4T
65B 2k ✗ 1.4T

LLaMA-2
A new mix of
publicly available
online data

7B 4k ✗ 2T
13B 4k ✗ 2T
34B 4k ✓ 2T
70B 4k ✓ 2T

Table: Key changes in LLaMA-2, compared to LLaMA-1.

LLaMA-2
Params

Time
(GPU hours)

Power
Consumption (W)

7B 184320 400
13B 368640 400
34B 1038336 350
70B 1720320 400

Table: GPU time (Nvidia A100 80GB) and power consumption for pre-training each model. If you have 1000 Nvidia A100, you
can finish the pre-training in one week.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 56/ 78

LLaMA-2-CHAT
◦ Training pipeline of LLaMA-2-CHAT: Same as InstructGPT, including:
▶ Pre-training
▶ Instruction tuning
▶ RLHF

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 57/ 78

LLaMA-2-CHAT
◦ Difference
▶ Use two reward models in RLHF, one for Safety, one for Helpfulness.
▶ In RLHF, not only use PPO, but also consider “rejection sampling fine-tuning”.
▶ Use “Ghost Attention”.

▶ Denote by Srule:=“Always answer with emojis”,
▶ Denote by a multi-round conversation [S1

response, S1
prompt, . . . ST

response, ST
prompt].

▶ To avoid the model forgetting Srule, one can add it before each Sresponse, but too expensive.
▶ Alternatively, when optimizing the loss w.r.t St

response, Ghost Attention adds Srule only before St
prompt, and set the loss

before the previous t − 1 conversation as zero so that the model is not required to predict Srule.

Figure: Left: issue of multi-turn memory without ghost attention. Right: Solved by ghost attention.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 57/ 78

LLaMA-3
“https://ai.meta.com/blog/meta-llama-3”, 2024

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 58/ 78

LLaMA-3

Pre-training Data Params Context
Length

Grouped-query
attention

Tokens

LLaMA-1 See previous slide

7B 2k ✗ 1T
13B 2k ✗ 1T
33B 2k ✗ 1.4T
65B 2k ✗ 1.4T

LLaMA-2
A new mix of
publicly available
online data

7B 4k ✗ 2T
13B 4k ✗ 2T
34B 4k ✓ 2T
70B 4k ✓ 2T

LLaMA-3 7 times larger than
that of Llama-2

8B 8k ✓ 15T
70B 8k ✓ 15T

Table: Key changes in LLaMA-3, compared to LLaMA-2 and LLaMA-1.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 59/ 78

GPT-4 [26]
“GPT-4 Technical Report”, 2023

◦ Multi-modals closed-source LLMs with text + image modality.

Figure: From [26]

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 60/ 78

CLIP (Contrastive Language-Image Pre-training) [29]
“Learning Transferable Visual Models From Natural Language Supervision”, 2021

◦ To understand how GPT-4 supports image input, it’s essential to study large vision foundation models.

◦ The training of CLIP relies on contrastive learning.
▶ Given N image-caption pairs.
▶ Denote by the trainable encoder output of image-caption pairs as (I1, T1), . . . , (IN , TN).
▶ For each image In, calculate the logits [⟨In, T1⟩, . . . , ⟨In, TN ⟩].
▶ Calculate cross-entropy loss given this logit and true label n.
▶ The loss for each text is calculated in a similar way.

◦ CLIP learns vision features that can be useful for downstream tasks, similar to pre-training of LLMs.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 61/ 78

MiniGPT-4 (open-source Large Vision Language Model) [52]
“MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large Language Models”, 2023

◦ MiniGPT-4 architecture:
▶ an LLM Vicuna (advanced version of LLama-2-CHAT)
▶ vision encoder of BLIP-2 (advanced version of CLIP), including a pre-trained ViT and Q-Former.
▶ a single linear projection layer.
◦ MiniGPT-4 only requires training the linear projection layer to align the visual features with the LLM.

Figure: Architecture of MiniGPT-4.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 62/ 78

Efficient Fine-tuning - LoRA [15]“LoRA: Low-Rank Adaptation of Large Language Models”, 2022

◦ Full fine-tuning is computationally expensive. Number of training
parameters:
▶ GPT-1: 117M
▶ GPT-2: 1.5B
▶ GPT-3: 175B
◦ Regular fine-tuning updates the whole pre-trained weights X0 ∈ Rm×d .

◦ Low-rank decompositon of updates:

X0 + ∆X = X0 + BA

where rank r ≪ min(m, d), B ∈ Rm×r and A ∈ Rr×d.

◦ During training, X0 frozen, A and B are trainable. After training:

h = X0b −→ h = X0b + ∆Xb = X0b + BAb

Figure: Initialization of A and B
matrices

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 63/ 78

Efficient Fine-tuning - LoRA [15]“LoRA: Low-Rank Adaptation of Large Language Models”, 2022

Advantages of
LoRA:

▶ Number of training parameters per layer: m× d −→ r × (m + d)
▶ Different A, B sets for different tasks and fixed X0
▶ Final performance matches the performance with full fine-tuning.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 64/ 78

Efficient Fine-tuning - Adapters [14]“Parameter-Efficient Transfer Learning for NLP”,2019

◦ For fine-tuning, small number of parameters are added to the original network.

◦ Parameters of original network are frozen, only newly added weights are trained.

LLaMA-Adapter [50]:◦ The Adapter algorithm is modified for Llama 2 model.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 65/ 78

Towards building trustworthy LLMs

Figure: From [20].

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 66/ 78

Robustness

◦ LLMs are vulnerable to imperceptible adversarial attacks [20, 34].

Figure: Inserting a simple typo can alter the output of LLMs.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 67/ 78

Robustness

◦ Charmer: [34] Greedily select the best single-character perturbation at each iteration.

◦ Algorithm 1:Greedy position selection
▶ Insert a special character ξ (e.g., empty space) into each

position of S as follows:
▶ “ξThey don’t care about us”
▶ “Tξhey don’t care about us”
▶ . . .
▶ “They don’t care about usξ”

▶ Calculate the loss for each position and select the top position.
◦ Algorithm 2: Greedy substitution selection.
▶ Insert different characters into the top positions.
▶ Greedily select the best substitution.

Alphabet

S = They don’t care about us

y = negative

= They don’t care about us

= negative

 LM

Algorithm 2

_T_h_e_y_ _d_o_n_’_t_ _c a_r_e_ _a_ _o_u_t_ _u_s_a

b

c

9

.

!

?

...

a

b

c

9

.

!

?

...

a

b

c

9

.

!

?

...

Algorithm 1

get_top_positions(, ,3)

LM= They don’t c are about us

= positive

J

Sentence with

highest lossFalse

Success = They don’t c are about us

 = positive

J

True
Sentences

Figure: Schematic of the Charmer attacker.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 68/ 78

Safety
◦ Even though LLMs undergo safety alignment, they are still susceptible to adversarial attacks
◦ Adding some suffixes can still elicit harmful content, as known as “jailbreaking attack” [20, 53].

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 69/ 78

Safety
◦ Jailbreaked prompt can even be transferred from open-source models (Llama-2) to closed-source GPT-3.5.

Figure: Jailbreaking closed-source LLMs [53].
LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 70/ 78

Misuse & Privacy

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 71/ 78

Misuse & Privacy
◦ One can extract person’s name, email address, phone number, fax number, and physical address from LLMs.

◦ Methods: sample a large number of output → Use membership inference attack to filter out memorized text.

◦ Membership inference attack can be done by measuring the perplexity: exp(− 1
T

∑T

t=1 log p(wt|w1:t−1)).

Figure: Privacy extraction attack [4]

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 72/ 78

Take care when fine-tuning your LLMs
“Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!”, 2023

◦ How does fine-tuning affect safety alignment?
1. Harmful examples demonstration attack

▶ Harmfulness rates after 100 examples, 5 epochs:
GPT3.5-Turbo 1.8% −→ 91.8%

Llama-2-7b-Chat 0.3% −→ 80.0%

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 73/ 78

Take care when fine-tuning your LLMs
“Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!”, 2023

2. Identity Shifting Attack

▶ Harmfulness rates after 10 examples, 10 epochs:
GPT3.5-Turbo 0.0% −→ 87.3%

Llama-2-7b-Chat 0.0% −→ 68.2%

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 74/ 78

Take care when fine-tuning your LLMs
“Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!”, 2023

3. Benign Fine-tuning

▶ Harmfulness rates after 1 epoch with different benign datasets:
Alpaca [40] Dolly [7]

GPT3.5-Turbo 5.5% −→ 31.8% 4.5% −→ 23.9%
Llama-2-7b-Chat 0.3% −→ 16.1% 0.6% −→ 12.1%

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 75/ 78

Data Leakage with Fine-tuning [25]“Memorization in NLP Fine-tuning Methods”, 2022

◦ How does fine-tuning affect privacy?

Figure: Three phases of training [25]

▶ Membership inference (MIA Recall): higher rates mean higher leakage.
▶ Exposure (Validation PPL): rate of exposure of a “secret” phrase. Higher rates mean more exposure.
▶ Ideally, we want low values in both metrics.

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 76/ 78

Towards building trustworthy LLMs

▶ Data selection [48].
▶ Further improve fine-tuning/RLHF to align better with human preference [32].
▶ Machine unlearning: forget harmful content or private content [21].
▶ Membership inference attack: detect whether a data sample is used in the training set [38].
▶ Adversarial training to improve robustness [5].

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 77/ 78

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 78/ 78

References I

[1] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent.
A neural probabilistic language model.
Advances in neural information processing systems, 13, 2000.
(Cited on page 27.)

[2] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners.
In Advances in Neural Information Processing Systems, 2020.
(Cited on pages 46 and 47.)

[3] Bochuan Cao, Yuanpu Cao, Lu Lin, and Jinghui Chen.
Defending against alignment-breaking attacks via robustly aligned llm.
arXiv preprint arXiv:2309.14348, 2023.
(Cited on page 58.)

[4] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam
Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al.
Extracting training data from large language models.
In 30th USENIX Security Symposium (USENIX Security 21), pages 2633–2650, 2021.
(Cited on page 86.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 1/ 14

References II

[5] Stephen Casper, Lennart Schulze, Oam Patel, and Dylan Hadfield-Menell.
Defending against unforeseen failure modes with latent adversarial training.
arXiv preprint arXiv:2403.05030, 2024.
(Cited on page 91.)

[6] Jonathan H. Clark, Dan Garrette, Iulia Turc, and John Wieting.
Canine: Pre-training an efficient tokenization-free encoder for language representation.
Transactions of the Association for Computational Linguistics, 10:73–91, 2022.
(Cited on page 17.)

[7] Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin.
Free dolly: Introducing the world’s first truly open instruction-tuned llm, 2023.
(Cited on page 89.)

[8] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V. Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context, 2019.
(Cited on page 16.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 2/ 14

References III

[9] Yiran Ding, Li Lyna Zhang, Chengruidong Zhang, Yuanyuan Xu, Ning Shang, Jiahang Xu, Fan Yang, and
Mao Yang.
Longrope: Extending llm context window beyond 2 million tokens.
arXiv preprint arXiv:2402.13753, 2024.
(Cited on pages 37 and 38.)

[10] Albert Gu and Tri Dao.
Mamba: Linear-time sequence modeling with selective state spaces, 2024.
(Cited on page 37.)

[11] Albert Gu, Karan Goel, and Christopher Ré.
Efficiently modeling long sequences with structured state spaces, 2022.
(Cited on page 37.)

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
(Cited on page 41.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 3/ 14

References IV

[13] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models.
arXiv preprint arXiv:2203.15556, 2022.
(Cited on pages 65, 66, and 67.)

[14] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
Parameter-efficient transfer learning for nlp, 2019.
(Cited on page 79.)

[15] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen.
LoRA: Low-rank adaptation of large language models.
In International Conference on Learning Representations, 2022.
(Cited on pages 77 and 78.)

[16] Md Rabiul Islam, Mohammad Ali Moni, Md Milon Islam, Md Rashed-Al-Mahfuz, Md Saiful Islam,
Md Kamrul Hasan, Md Sabir Hossain, Mohiuddin Ahmad, Shahadat Uddin, Akm Azad, et al.
Emotion recognition from eeg signal focusing on deep learning and shallow learning techniques.
IEEE Access, 9:94601–94624, 2021.
(Cited on page 12.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 4/ 14

References V

[17] Dan Jurafsky and James H. Martin.
Speech and Language Processing (3rd ed. draft).
draft, third edition, 2023.
(Cited on pages 7, 9, and 13.)

[18] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei.
Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.
(Cited on pages 65 and 66.)

[19] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa.
Large language models are zero-shot reasoners.
Advances in neural information processing systems, 35:22199–22213, 2022.
(Cited on page 53.)

[20] Yang Liu, Yuanshun Yao, Jean-Francois Ton, Xiaoying Zhang, Ruocheng Guo Hao Cheng, Yegor Klochkov,
Muhammad Faaiz Taufiq, and Hang Li.
Trustworthy llms: a survey and guideline for evaluating large language models’ alignment.
arXiv preprint arXiv:2308.05374, 2023.
(Cited on pages 80, 81, and 83.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 5/ 14

References VI

[21] Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter.
Tofu: A task of fictitious unlearning for llms.
arXiv preprint arXiv:2401.06121, 2024.
(Cited on page 91.)

[22] Andrey Andreyevich Markov.
Essai d’une recherche statistique sur le texte du roman.
Eugene Onegin” illustrant la liaison des epreuve en chain (‘Example of a statistical investigation of the text
of “Eugene Onegin” illustrating the dependence between samples in chain’)”. In: Izvistia Imperatorskoi
Akademii Nauk (Bulletin de l’Académie Impériale des Sciences de St.-Pétersbourg). 6th ser, 7:153–162,
1913.
(Cited on page 9.)

[23] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013.
(Cited on pages 13, 14, and 15.)

[24] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur.
Recurrent neural network based language model.
In Interspeech, 2010.
(Cited on page 28.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 6/ 14

References VII

[25] Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David Evans, and Taylor Berg-Kirkpatrick.
Memorization in nlp fine-tuning methods, 2022.
(Cited on page 90.)

[26] OpenAI.
Gpt-4 technical report.
Technical report, OpenAI, 2023.
(Cited on page 74.)

[27] Charles Egerton Osgood, George J Suci, and Percy H Tannenbaum.
The measurement of meaning.
University of Illinois press, 1957.
(Cited on page 12.)

[28] Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y. Fu, Tri Dao, Stephen Baccus, Yoshua Bengio,
Stefano Ermon, and Christopher Ré.
Hyena hierarchy: Towards larger convolutional language models, 2023.
(Cited on page 37.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 7/ 14

References VIII

[29] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural language supervision.
In International conference on machine learning, pages 8748–8763. PMLR, 2021.
(Cited on page 75.)

[30] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever.
Improving language understanding with unsupervised learning.
Technical report, OpenAI, 2018.
(Cited on pages 41, 42, 43, and 44.)

[31] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners.
OpenAI blog, 2019.
(Cited on pages 46 and 47.)

[32] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: Your language model is secretly a reward model.
Advances in Neural Information Processing Systems, 36, 2023.
(Cited on page 91.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 8/ 14

References IX

[33] Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen.
Samba: Simple hybrid state space models for efficient unlimited context language modeling, 2024.
(Cited on page 37.)

[34] Elias Abad Rocamora, Yongtao Wu, Fanghui Liu, Grigorios G Chrysos, and Volkan Cevher.
Revisiting character-level adversarial attacks for language models.
2024.
(Cited on pages 81 and 82.)

[35] Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo.
Are emergent abilities of large language models a mirage?
In NeurIPS, 2023.
(Cited on page 55.)

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.
(Cited on page 62.)

[37] Rico Sennrich, Barry Haddow, and Alexandra Birch.
Neural machine translation of rare words with subword units, 2016.
(Cited on page 18.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 9/ 14

References X

[38] Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi Chen, and
Luke Zettlemoyer.
Detecting pretraining data from large language models.
In The Twelfth International Conference on Learning Representations, 2023.
(Cited on page 91.)

[39] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu.
Roformer: Enhanced transformer with rotary position embedding.
Neurocomputing, page 127063, 2023.
(Cited on pages 36 and 38.)

[40] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto.
Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.
(Cited on page 89.)

[41] Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
Lamda: Language models for dialog applications.
arXiv preprint arXiv:2201.08239, 2022.
(Cited on page 54.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 10/ 14

https://github.com/tatsu-lab/stanford_alpaca

References XI

[42] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.
(Cited on pages 63 and 64.)

[43] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.
(Cited on page 68.)

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin.
Attention is all you need.
In Advances in Neural Information Processing Systems, 2017.
(Cited on pages 35, 36, and 41.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 11/ 14

References XII

[45] Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le.
Finetuned language models are zero-shot learners.
In International Conference on Learning Representations, 2022.
(Cited on page 57.)

[46] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022.
(Cited on pages 52 and 54.)

[47] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu,
Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,
Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean.
Google’s neural machine translation system: Bridging the gap between human and machine translation,
2016.
(Cited on page 18.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 12/ 14

References XIII

[48] Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang, Quoc V Le,
Tengyu Ma, and Adams Wei Yu.
Doremi: Optimizing data mixtures speeds up language model pretraining.
Advances in Neural Information Processing Systems, 36, 2023.
(Cited on page 91.)

[49] Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, and
Colin Raffel.
Byt5: Towards a token-free future with pre-trained byte-to-byte models, 2022.
(Cited on page 17.)

[50] Renrui Zhang, Jiaming Han, Chris Liu, Peng Gao, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu,
Hongsheng Li, and Yu Qiao.
Llama-adapter: Efficient fine-tuning of language models with zero-init attention, 2023.
(Cited on page 79.)

[51] Beitong Zhou, Cheng Cheng, Guijun Ma, and Yong Zhang.
Remaining useful life prediction of lithium-ion battery based on attention mechanism with positional
encoding.
In IOP Conference Series: Materials Science and Engineering, volume 895, page 012006. IOP Publishing,
2020.
(Cited on pages 35 and 36.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 13/ 14

References XIV

[52] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny.
Minigpt-4: Enhancing vision-language understanding with advanced large language models.
In The Twelfth International Conference on Learning Representations, 2024.
(Cited on page 76.)

[53] Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson.
Universal and transferable adversarial attacks on aligned language models.
arXiv preprint arXiv:2307.15043, 2023.
(Cited on pages 83 and 84.)

LLMs | Prof. Volkan Cevher; volkan.cevher@epfl.ch Slide 14/ 14

	Appendix

